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THERMAL STRESSES IN THIN BEAMS·

THEIN WAH
Southwest Research Institute, San Antonio, Texas

Abstract-A method is proposed for the exact solution of certain two-dimensional thermoelastic problems by
the use of doubly infinite Fourier series, The method possesses computational advantages in many practical
types of temperature distribution. Illustrative examples are given comparing the present method with an
existing solution.
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length, depth and thickness of beam
rectangular Cartesian coordinates
Airy's stress function
coefficient of linear thermal expansion
temperature rise
time
integers
displacement in the x and y directions
normal stresses and shear stress
Poisson's ratio
Young's modulus
thermal diffusivity

INTRODUCTION

THE PROBLEM here discussed is the exact solution for the stresses and displacements of a
free rectangular beam of length a, depth b and small thickness c which is under an
arbitrary temperature distribution. Boley [1] has discussed the same problem and has
given a solution by employing an infinite series of polynomial functions which are obtain
able by a differential recurrence relation. Additional related results are given by Boley
and Tolins [2]. Boley's solution is substantially reproduced in the treatise by Boley and
Weiner [3], which will be referred to hereafter.

An alternative solution of the same problem is proposed here which, in certain cases,
possesses computational advantages and avoids extensive tabulation of functions. Further
comments on the two methods are given in the concluding section of the paper.

The basic formulation requires that the second derivatives of the temperature distribu
tion have only a finite number of discontinuities so as to permit their formal expansion
in a Fourier series. It is of course not necessary that this series be everywhere convergent.
The situation is analogous to the case of a concentrated load on a beam, which can be
formally expanded in series of sines. The Euler sum [4] of such a series may be shown
to converge to zero everywhere except at the load itself where it becomes infinite.t This
type of formal expansion may be carried out even when the temperature distribution

* This work was supported by Southwest Research Institute.
t This was pointed out to the writer by his colleague Dr. W.-H. Chu.
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is given as tabular values at certain specified points over the beam and is therefore of
great practical value.

(1)

DIFFERENTIAL EQUATION

The governing differential equation is [3]

(
82T 82T)V4 t/> = -(i.E -+-8y2 ax2

where V4 = (V2)2, V2 being Laplace's operator, t/> is Airy's stress function, IX is the co
efficient of thermal expansion and E is Young's modulus. T == T(x, y) is the given tem
perature distribution. The beam occupies the region 0 ~ x ~ a, 0 ~ y ~ b such that
(bla) ~ 1. The thickness c of the beam is assumed sufficiently small for the two-dimen
sional theory to apply.

The boundary conditions on t/> on the edges y = 0, bare:

(3)

(2)

y = O,b.

y = 0, bat

at

t/>=O

8t/> = 0
oy

On the edges (x = 0, a), the theoretically exact boundary conditions are

t/>=O }

at/> = 0
ax .

(4)

(5)

(7)

(6)X := 0, a

X := O,a

x = O,a

at

at

at

However, as pointed out previously [3] it is not possible, except in very special cases,
to satisfy the latter conditions. Generally, one has to replace the condition of zero tractions
by the condition that they be self equilibrating, namely

J
b cPt/>

c pdy = 0
o Y

J
b a2t/>

c Y8"2dy = 0
o y

J
b 82t/>

c --dy=O
o oxoy

It is on the basis of these boundary conditions that the solution in [3] has been
developed; in this paper, the first part of (4) and (7) will be employed.

If the temperature distribution T = Tof(x, y) is such that its second partial derivatives
contain only a finite number of discontinuities, then it is possible to represent formally
the right-hand member of (1) in a double Fourier series. Let

a2T iPT To 00 00 • mnx . nny
-a2 +~ = -b L: L: a"",sm-sm-

b
. (8)

x uy a m= 1 n= 1 a



n odd

Thermal stresses in thin beams

We note here for future reference that if T = Tof(x) is independent of y

8b
amn = -gm

nna

gm = a ra

f"(x) sin mnx dx
Jo a

and if the temperature is a linear function of y so that T = To(y/b)f(x)

4b (_1)n+1
amn = - gm

a nn

gm = a ra

f"(x) sin mnx dx.
Jo a

In equations (9) and (10), primes denote differentiation with respect to the argument.
Suppose that

where

A.. " " b . mnx , nny
'1'1 = L. L. mn sm--sm-

bm n a

is a particular integral of (1).
Substitution of (12) and (8) into (1) yields

bmn = To~ab3 [ 2 2 arr;n 22'
n a m (b fa )+n ]

cP2 is a biharmonic function and may be taken in the form

A.. ToEab
3
~ y. ( ) , mnx

'1'2 = 3 L. m y sm--
n a m=1 a

with

mny mny. mny
Ym(y) = Amcosh-+B -smh-

a m a a

. mny mny mny
+Cmsmh--+Dm-·-cosh--

a a a

Am' Bm, Cm and Dmbeing arbitrary constants.
Since

vanishes at x = 0, a, the boundary conditions (5) and (6) are satisfied.
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We note that:

Jb024> Jb 024>1 Jb 024>2 Jb 024>2-dy = -dy+ --dy = -dy
o oxoy 0 GXoy 0 GXoy 0 oxoy

ToEIXb
3 ~ mn mnx fb Y' (y) d= 3 1... -cos-- m y.

n a m= I a a 0

(16)

Since

the boundary condition (7) is satisfied if

Ym(O) = Ym(b) = o.

The boundary condition (2) may be stated as

Ym(O) = Ym(b) = 0

(17)

(18)

in virtue of the fact that 4> 1 vanishes at y = 0, b.
Thus imposition of the condition (18) [or (2)] automatically satisfies the boundary

condition (7).
Finally, the boundary condition (3) requires that:

(19)

(20)

primes denoting differentiation with respect to y. If equation (15) is introduced into (18),
(19) and (20), there results

with

Am = 0

BmPm sinh Pm +Cmsinh Pm +DmPm cosh Pm = 0

CmPm +DmPm = Qm

Bm(Pm cosh Pm + sinh Pm) +Cmcosh Pm + Dm(Pm sinh Pm +cosh Pm) = P",/Pm

(21)

P = mnb
m ,

a

It is remarked here that while generally Qm and Pm have to be computed by numerical
summation to the desired number of terms, closed form expressions for these quantities
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(23)

are available in certain cases. In particular, when the temperature distribution is indepen
dent of y, one has from (9) and (22):

Q = _p = 8gmb ~ 1
m m na = 1... [m2(b2ja2) +n2]2

n 1.3.5 •...

n2gm(sinh 13m - 13m)

mf3;' (1 + cosh 13m) .

When the temperature distribution is linear in y, one obtains from (10) and (22)

4bgm 00 (_I)n+l

Qm = -Pm =~ = L [m2(b2ja2)+n2J2
n 1.2....

2n
2g

m { 11 }= mf3;' 13m -2 csch f3m(l + 13m coth 13m) .

Solution of equations (20) gives

Bm = - {cosh f3m(Qm sinh 13m + Pmf3m) -(Qmf3m + Pm sinh f3m)}jf3m(sinh 2 13m - 13;')

Cm = - (Qmf3m + Pm sinh f3m)j(sinh2 13m - 13;')

Dm = sinh f3m(Qm sinhf3m+ Pmf3m)jf3m(sinh2 f3m-f3;')·

The stresses are given by:

_ iJ2¢ _ ToElY.b{nb
2
~ (1)' mnx ~ ~ 2;:: • nny . mnx}

ax - ::1 2 - 2 2 1... mYm sm + 1... 1... n <"mn sm b sm
uy n a a m a m n a

_ iJ2¢ _ ToEIY.b 3 {~ 2 . mnx _ ~ ~ m2;:: . nny. mnx}
ay - ::1 2 - 3 1... m ~ sm 1... 1... <"mn sm b sm

uX na m a m n n a

iJ2¢ ToElY.b
2
{nb ~ y(2) mnx ~ ~;:: nny mnx}

'r xy = iJxiJy n2a2 a 1... m m cos -a-- 1... 1... mn<"mn cos b cos -a-

with

mny. mny . mny mny mny
~ = B --smh--+C slnh--+D --cosh--m a a m a m a a

{ ~
mny. mny mny) . mny

yO) = m B --smh--+2cosh-- +Cmsmh-
m m a a a a

(mny mny . mny)}
+ Dm\-a- cosh -;;-+ 2 smh-;;-

{ (
mny mny . mny) mny

y(2) = m B -- cosh --+ smh-- + Cmcosh--
m m a a a a

(
mny . mny mnY)ll

+Dm -;;-smh-a-+ cosh~ 'f'
6

(24)

(25)

(26)

(27)

(28)

(29)
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(32)

v

The displacements u and v in the x and y directions are obtained by integrating

Du = ![02¢ -/P¢J+IXT
oX E oy2 ox2

ov = .!J02¢ _ v02¢J + IXT (30)
oy ELox2 oi

OU ov 2(1 + v) 02¢
--+-= -----
oy ox E oxoy

v standing for Poisson's ratio. The result is:

~ = To:{b: L Y~)(I- cos mnx) +! I I n
2
~mn sin nny (1- cos mn

y
)}

IX n am a nmnm b\ a

+ ;:::{~m~ (1- cos m;x)_ ~ ~ ;~mn sinn~ (1- cos m;x)} (31)

+To (f(x,y)dx+Cty+c2

Tob
3

{ 3' mnx b " m
2

( nny) . mnx}-2"2 LmYVslll----LL.,,-~mnl-cos- Slll--
n a m a an m n n b a

_ To~2V{L (nbY~)_Qm) sin mnx + I I n~mn(l- cos nn
y

) sin mnx}
n a m a a m n b a

+ To f: f(x, y) dy-c tx+c3

(33)

c t , C2 and C3 being arbitrary constants and

(
mny mny. mny) ( mny )

Y~) = Bm -a-cosh---;--slllh-a- +Cm~cosh---;--1

(
mny . mny mny )

+Dm --smh--- cosh--+l .
a a a

It may sometimes happen, as will be seen in the examples to follow, that the double
series involved in the expressions for stresses and displacements can be reduced to a
singly infinite series by explicit summation over n, thus greatly facilitating numerical
evaluation.

ILLUSTRATIVE EXAMPLES

(34)

Example 1

Boley's solution [3], gives closed form expressions for stresses when the temperature
distribution is described by a polynomial in x. It is thus convenient, for purposes of com
parison, to take first a simple example where the temperature distribution is given by

x2

T= To 2'
a
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From equation (9) one then finds
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32 b
amn = --2-'

mnrr a

and

m,n odd (35)

~mn = amn /(m
2
::+n

2Y= ~;:/mn(m2 ::+n2r,
If now one makes use of the relations

4 a (sinh Pm - Pm)
Qm = -Pm = m3 b Pm(l+coshPm)' m = 1,3,5",

~ sin (nrry/b) = _rr_
5

[I-COSh _m_rr_y +_m_rr_y sinh _mrr_y
= L... -n=-[m-::2'"""(b-;:2;-':"/a-::2;-)-+-n-;;-2=]2 4134 a 2a a

n 1,3,5 m

(1- cosh Pm){Pm sinh (mrry/a) mrry h mrry 'h mrry }]+ +--cos ---sm -
sinh Pm 2 sinh Pm 2a a a

L sin(m~x/a) = rr
5 [<_2~3 +~]

m=I,3,5 m 96 a a a

cP2 assumes the form

,/,. _ 4ToErxa2 ~ (sinh Pm-Pm) sin(mrrx/a){ mrry , hmrry
'1'2 - rr5 L... ( , h 13 13) 5 --- sm --m=I,3,5 sIn m+ mm a a

Pm ' h mrry sinh Pm mrry h mrry}+ sm --+ --cos --
I + cosh Pm a (1 + cosh Pm) a a

and cPl may be written in either of the two alternative forms

ToErxa
2
(x

4
_ 2x

3
+~)

12 a4 a3 a

4To Erxa2
~ Sin(mrrx/a){ 2 h mrry mrry 'nh mrry

-'--;-5- L... 5 - cos --+-- Sl --
rr m=1.3,5 m a a a

(2 sinh Pm - Pm) , h mrry (I-cosh Pm) mrry h mrry }
+ sm --+ --cos --

I + cosh Pm a sinh Pm a a

or

4ToErxb4 ~ sin(nrry/b){2 hnrrx nrrx , hnrrx
5 2 L... 5 - cos -b+-b sm -b

rr a n= 1,3,5 n

(2 sinh rxn - rxn) 'nh nrrx (1 - cosh rxn) nrrx h nrrx}+ Sl -+ -cos -
1+ cosh rxn b sinh rxn b b

(36)

(37)

(38)

(39)

(40)

(41)
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[3 = mnb
m ,

a
nna

0("=-,;-. (42)

It is pertinent to make the following remarks at this point. When the temperature
distribution is a quadratic function of x as in (34), the right-hand member of the basic
differential equation (1) is a constant. Consequently, if the origin of coordinates is shifted
to the center of the beam, the surface 4J must be symmetric with respect to both axes.
Moreover, satisfaction of the theoretically exact boundary conditions (2), (3) and (4)
requires that Airy's surface vary in the same way along x as along y, and have zero
ordinates at the boundaries. Equations (40) and (41) show that these requirements are
fairly closely satisfied.

Boley's solution [3] gives, in the present notation, the stress function

(43)

which is independent of x altogether, the surface 4J being a prismatic half-cylinder.
It is worthy of note that when x/b ~ 1, sinh 0(" = cosh 0(" ~ 0(" and the series III

equation (41) vanishes giving

On the other hand equation (39) becomes, approximately,

A. = 4ToEO(a2 ~ [3; Sin(mnx/a)([3 mny _ m
2
n2y2)

'1'2 5 L. 125m 2'n m= 1.3 m a a

Since

00 1. mnx nL -Slll--=-
m=1.3 .... m a 4

equation (45) reduces finally to

so that

(44)

(45)

(46)

which is precisely the relation (43). It may be conjectured that the present solution gives
a better picture of the stress distribution at some distance away from the center cross
section of the beam, and may perhaps be applied to cases where b/a is only moderately
small; this possibility is, however, not examined further here.
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(48)

(50)

(49)

The stresses, obtained by successive differentiation of 4>, may be written as follows:

_ ToEab3 ~ F1(y). mnx
(1x - 3 f.., 133 sm

a m=1.3 m a

ToErxb3 ~ F2(y) . mnx
(1 = - 3 f.., -133 sm (47)

Y a m= 1,3 m a

_ ToErxb 3 ~ F3(y) cos mnx
'l:xy = 3 f.., 133

a m=1,3 m a
with

) 8 [ (. hf3 )mny . hmny
F1(y = (13 'nhf3) - sm m-sm -m+S1 m a a

(
. mny mny mny) . mny]+(coshf3m-l) smh-+-cosh- -(smhf3m-f3Jcosh-

a a a a

F2(y) = 8[(13 ~ hf3 ){-(Sinhf3m)mny sinh mny + (cosh 13m-I)
m+s1n m a a

(
. mny mny mny)} mny ]

-smh---;-+7cosh-a- +cosh---;--l

8 ~ mny. mny . mny
F3(y) = (13 . hf3 ) (cosh f3m-l)-smh-+f3m smh

m+un m a a a

. mny mny]-(smhf3m)-cosh- .
a a

It will be noted that as mny/a becomes large, F1(y) -;. 0, F2(y) -;. - 8 and F3(y) -;. 0
so that the series in equations (47) are all convergent, although several terms may be
required for satisfactory accuracy.

Table 1 gives the result of calculation for the stresses (1x, (1y and 'txy , taken at
x/a = 0'125, 0'25, 0·375 and 0·5 for b/a = 0·1. Nine terms of the series were used in the
calculation. The rapidity of the convergence depends both on the location and the stress.
(1x converges most rapidly, (1y less so and 'txy least rapidly. Figures for 'txy are thus indica
tive of the order of magnitude of the stress rather than its actual value. For 0·5 s y/b s 1
the distribution of (1x and (1y is symmetrical about the center axis of the beam while that
of'l:xy is antisymmetrical.

The agreement with Boley's solution for (1x is most satisfactory at *span rather than
at the center of the span.

Example 2

As a second example we turn to a problem in transient thermal stress. Consider a
thin beam which is initially under an arbitrary temperature distribution T = j(x).
Suppose the bar insulated on all Its faces except at the ends x = 0, a which are kept at
zero temperature. The diffusion equation then gives for any time t the temperature
distribution

(51)
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UJA
y/b

This solution Boley [3]

0 -2·037 x 10- 1 -2·083 X 10- 1

0·125 -7·126 x 10- 2 -7.162x 10- 2

0·25 2·530 x 10- 2 2.603 x 10- 2

0·375 8·374 x 10- 2 8.462 x 10- 2

0·500 1·033 x 10- 1 1.042 x 10- 1

0 - 2.078 x 10- 1 - 2.083 x 10- 1

()'125 -7.150x 10- 2 -7-162 x 10- 2

0·25 2·596 x 10- 2 2·603 X 10- 2

0·375 8·448 x 10- 2 8.462 x 10- 2

0·500 1·040 x 10- 1 1.042 x 10- 1

0 -2·101xl0- 1 -2·083 X 10- 1

0·125 -7-179 x 10- 2 -7·162xlO- 2

0·25 2·633 x 10- 2 2.603 x 10- 2

0·375 8·502 x 10- 2 8.462 x 10- 2

().500 1·046 x 10- 1 1·042 x 10- I

0 -2·109 x 10- 1 -2·083 X 10- 1

0·125 -7·189xlO- 2 -7-162 x 10- 2

0·25 2·644 x 10- 2 2.603 x 10- 2

0·375 8·519 x 10- 2 8·462 x 10- 2

0·500 1·047 x 10- 1 1·042 x 10- I

THEIN WAH

TABLE I

Uy/A 'Cxy/A
x/a

This solution Boley [3] This solution Boley [3]

0 0 -0 0
-7·98 X 10- 4 0 8·84 X 10- 4 0
-1·987xlO- 3 0 7·11 X 10- 4 0 0·125
-2·783 x 10- 3 0 3·584 X 10- 4 0
- 3-048 x 10- 3 0 -0 0

0 0 0 0
-3·259xlO- 5 0 1·183 X 10- 3 0
-1·045 X 10-4 0 1·041 x 10- 3 0 0·25
-1·688 x 10- 4 0 5·491 X 10- 4 0
-1·949 X 10- 4 0 -0 0

0 0 0 0
2·955 X 10-4 0 6·818 X 10-4 0
7·376 X 10-4 0 6·10 X 10-4 0 0·375
1·042 x 10- 3 0 3·255 X 10-4 0
1·I44xl0- 3 0 -0 0

0 0 0 0
3·955 X 10-4 0 0 0
9·941 X 10- 4 0 0 0 0·5
1·411 x 10- 3 0 0 0
1·552 X 10- 3 0 0 0

Notes: A= 8ToEab3/a 3
, b/a = 0·1.

Nine terms of the series were used in calculating the stresses.

where K is the thermal diffusivity and

2f" . mnxbm = - f(x)sm-dx.
a 0 a

If, for definiteness, we choose

b = 12To( _l)m
m m3n3

Then

i32T i32T 12To 00 (_l)m+l . mnx (m2n2Kt)-+- = -- " sm--exp ----
i3x2 i3y2 na2 m~l m a a2

48To 00 00 (_l)m+ 1 . mnx . nny (- m2 n2 Kt)
= 22 I I sm--sm-

b
exp 2

na m=ln=l mn a a
n odd.

(52)

(53)

(54)

(55)

So that from (8) and (55)

_ 48 ~ (-lr+ 1 (- m2n2Kt)
amn - 2 exp 2

n a mn a
n odd (56)



Thermal stresses in thin beams

Equations (22), (23) and (56) then give

_ _ _ 61t(-1)m+1 (sinhPm-P,;,) (-m21t2Kt)
Qm- Pm - 2p2 hP exp 2 .m m 1+ cos m a

Making use of these results equations (26), (27) and (28) may be written

_ 12ToEIX ~ R {(I h P )( 'nh m1tY m1tY h m1ty)
(Jx - 3 L. m -cos m Sl --+--COS--

1t m= 1 a a a

+ (sinh Pm-Pm) cosh mny+(sinhPm)m1t
y

sinh m1tY}
a a a

_ 12ToEIX ~ R {(I h P )~. h m1tY m1tY h mny)
(Jy - 3 L.. m -cos m sIn -----cos --

n m= 1 a a a

-(sinh Pm)m:
y

sinh m:
y

+ (COSh m:
y
-1) (Pm + sinh Pm)}

= 12ToEIX ~ S {( h P -1) mny 'nh mny
't'xy 3 L. m COS m Sl

n m= 1 a a

. mny. mny mny }
+ Pm SInh -'--(SInh Pm)- cosh-

a a a
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(57)

(58)

(59)

(60)

(63)

(62)

with

Rm = (-I)m sin m:x exp (-m2::Kt))I/m3<Pm+SinhPm) } (61)

8m = (-1r cos m:x exp(m
2
::Kt m3(Pm + sinh Pm)

The double series in (26), (27) and (28) have been summed over n. It is readily checked
that all the series involved converge for t = 0, and so for t > O.

It is of interest to employ the method of Ret: [3] to this problem. The stress function
may be stated as

4> = 4>1 +4>2+4>3+'"
IXE cPT 2 2

4>1 = 0, 4>2 = -24 ax2Y (y-b)

A.. IXE a4
T 2 2 2 b 2

0/3 = 720 ax4Y (y-b) (2y -2 y-b )

IXE a6 T4>4 = _y2(y_b)2(9y4_18by3_3b2y2+ 12b3y-b4).
24 x 90 x 56 ex6

The stress functions 4>5' 4>6' etc., become quite tedious to derive. Each of the derivatives
eiT/exi, i = 1,2, ... is an infinite series whose rate of convergence decreases as i increases
although, for t > 0, all the series are theoretically convergent. Unless t is exceedingly
small, however, the series involved in Boley's solution converge very rapidly as may be
seen from the numerical results in Table 2 worked out for an arbitrarily chosen set of
parameters. It is noteworthy that 4>2 alone gives sufficiently good results.
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TABLE 2

0"./10- 3 ToEcx 0",/10- 5 ToEcx

y/b This Boley using This Boley using
solution solution

1/>2 1/>2 +1/>3 1/>2 1/>2 +1/>3

0 -4·6218 -4·6835 -4·6219 0 0 0
0·25 0·58196 0·58543 0·58207 3·1891 3-2472 3·1889
0·5 2·2882 2-3417 2·2879 5·6602 5·7728 5·6598
0·75 ()'58196 0·58543 0·58207 3·1891 3-2472 3-1889
I -4·6218 -4-6835 -4·6219 -0 0 0

x/a = 0·5, b/a = 0·2, Ktn
2/a 2 = 1.

The present solution poses no computational problems whatever the value of t,
including t = O.

CONCLUSIONS

While the present solution will generally yield satisfactory results, it is obvious that
Boley's method will be much the simpler in many cases. His method is particularly
attractive where the temperature distribution is given or can be described satisfactorily
as a polynomial. However, the results of applying the equation of heat conduction will
not, in general, result in such simple cases of temperature distribution. The resulting
distribution in fact may not even be expressible but consist merely of tabulated values.
The present method permits the solution of such problems by standard Fourier analysis
with an extra boundary condition satisfied.

The two methods are thus complementary and which method one chooses to apply
in the general case will depend partly on the problem but also partly on one's mathematical
preferences.
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Resume---Methode suggeree pour obtenir la solution exacte a certains problemes thermo-elastiques a deux
dimensions, en utilisant les suites Fourier infinies doubles. Cette methode presente des avantages de calcul
pour de nombreux types pratiques de distribution de temperature. Des exemples a l'appui comparent la presente
methode a une solution etablie.
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Zusammenfassung-Es wird eine Methode flir die genaue LOsung von gewissen zweidimensionalen thermo
elastischen Problemen durch die Verwendung von doppelt unendlichen Fourierschen Iieihen vorgeschlagen.
Die Methode besitzt berechnerische Vorteile in vielen praktischen Arten der Temperaturverteilung. Illustrierte
Beispiele sind gegeben welche die Methode mit einer bestehenden Losung vergleichen.

A6CTpaKT-npe.uJIaraeTCSI MeTo.u .uJIli TO'fHOrO pemeHlU1 HeKOTopbIX' .uByxMepHhIx TepMOJJIaCTH'feCKHX
np06JIeM npHMeHeHHeM .uBoiiHbiX 6ecKOHe'fHbIX cepHii cl>ypbe(Fourier). MeTo.u o6JIa.uaeT Bbl'fHCJIHTem,
HhIMH npeHMymecTBaMH BO MHorHX npaKTH'feCKHX BH.uax pacnpe.ueneHHll TeMneparypbI. ,n:aHhI nOllCHIf~

TeJlbHble npHMepbl cpaBHeHHll renepemHero MeTo.ua CcymeCTBYlOmHM pemeHHeM.


